Robust Facial Recognition Based on Local Gaussian Structural Pattern

نویسندگان

  • Jorge A. Rojas Castillo
  • Adin Ramirez Rivera
  • Oksam Chae
چکیده

In this paper, we propose a novel local feature descriptor, Local Gaussian Structural Pattern (LGSP), for face recognition that encodes the directional information of the face’s textures (i.e., the texture’s structure), producing a more discriminant code than other state-of-the-art methods. Each micro-pattern’s structure is computed by using a derivative-Gaussian compass mask, which is more robust against challenging illumination and noisy conditions, and encoded by using the principal directions. Consequently, the compass mask helps distinguishing among similar structural patterns. Moreover, our descriptor encodes more information by using different resolutions of the compass mask. Thus to process a face, we divide it into several regions and extract the distribution of the LGSP features from them. Then, we concatenate these features into a feature vector, and we use it as face descriptor. We perform several experiments in which our descriptor showed consistent results under age, illumination, expression, and noise variations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Facial Expression Recognition Based on Structural Changes in Facial Skin

Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...

متن کامل

Local gradient pattern - A novel feature representation for facial expression recognition

Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...

متن کامل

Facial expression recognition based on Local Binary Patterns

Classical LBP such as complexity and high dimensions of feature vectors that make it necessary to apply dimension reduction processes. In this paper, we introduce an improved LBP algorithm to solve these problems that utilizes Fast PCA algorithm for reduction of vector dimensions of extracted features. In other words, proffer method (Fast PCA+LBP) is an improved LBP algorithm that is extracted ...

متن کامل

Automatic Face Recognition via Local Directional Patterns

Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...

متن کامل

Anthropometric Analysis of Face using Local Gaussian Distribution Fitting Applicable for Facial Surgery

Human facial plays a very important role in the human’s appearance. Many defects in the face affect the facial appearance, significantly. Facial plastic surgeries can correct the defects on the face. Analysis of facial color images is very important due to its numerous applications in facial surgeries. Different types of facial surgeries, such as Rhinoplasty, Otoplasty, Belpharoplasty and chin ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012